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The equation of motion of dynamic systems used in modeling the behavior of engineer- 
ing devices usually allow one to isolate not only the system parameters, but also the 
parameter-free (sinusoidal, polygonal, relay-type, etc. ) normalized characteristics de- 

scribing the individual elements of the device under consideration. The choice of such 
characteristics is always to some extent arbitrary, being dictated by: (a) the need to 

ensure adequate agreement between the behavior of the approximating characteristic 
and that of the true characteristic of the device, and (b) the need to obtain a system of 
equations amenable to investigation in sufficient detail. 

Suitable choice of a characteristic (a suitable appro~ma~on) is a major phase in the 
construction of a usable model. The chosen characteristic is associated with a specific 
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decomposition of the parameter space of the system into domains characterized by dif- 
fering qualitative structures of the phase space. A natural requirement in constructing 

a convenient model by altering the approximation is that of preserving the qualitative 

structure of the parameter space decomposition as well as the structure of the phase 

space of the system in making the alteration. This makes it necessary to determine the 

degree to which it is possible to alter the characteristics of a system without essentially 

altering the general way in which the trajectories depend on the parameters, and also to 
ascertain the changes in the parameter space associated with changes in the character- 

istics. 

1, Let us consider equations of the form 

where Fi(Zj and $i (2) are the piecewise-continuous (and in a particular case analytic) 
characteristics of the system, and hk are the parameters. 

De fin i t i o n 1.1. We call the parameter space ?L.~ of system (1.1) “coarse” with 

respect to the class of characteristics Fi(z) and $Jj(Z) if the qualitative structure of 

the decomposition of the parameter spacehk into domains of the same (or in some sense 

similar) structure of the decomposition of the phase space into trajectories remains 
unchanged for all the characteristics belonging to this class. 

The problem of isolating the classes of characteristics with respect to which the para- 

meter space h, of system (1.1) is coarse reduces to the problem of investigating the 
bifurcations [l] which can occur in the system upon alteration of the characteristics. If 

the replacement of one characteristic by another is not accompanied by the disappear- 
ance of any possible bifurcation or with the appearance of any new ones, then the system 

is “coarse” with respect to these characteristics in the above sense. The problem is a 
very difficult one in the general case, and there are no regular methods for its solution. 
The bifurcations which can occur in a system are amenable to investigation in differing 
degrees. The simplest of them are characterized by values of certain quantities at a 

point of the phase space (this category includes bifurcations of complex equilibrium 

states and bifurcations involved in estimates of the number of limit cycles arising from 

an equilibrium state of the focus or separatrix-loop type). Other bifurcations require 
information on the global behavior of trajectories and cannot be obtained.by regular 

methods (this includes the very complex problems concerning the existence of saddle- 

to-saddle separatrices and the birth of double limit cycles from a trajectory condensation). 

However, in certain cases such global estimates can be obtained by exploiting the 
specific properties of the equations under investigation or by using specially chosen com- 

parison systems, whereupon the problem becomes completely solvable. A more frequent 
possibility is that of isolating classes of characteristics for which one can ensure the con- 
stancy of the decomposition of the parameter space into domains not of identical, but in 

some sense similar, structure. 
For example, we can agree not to distinguish between domains of the parameter space 

associated with decompositions of the phase space which may differ by an even number 
of limit cycles. Such a formulation of the problem is often useful, since it expands the 

class of characteristics, extends the range of suitable choice of approximations, and there- 
fore increases the opportunities of obtaining full information about all the most impor- 
tant characteristics of operation of the device as determined by the parameters. At the 
same time this approach serves to circumvent the often unsolvable problem of tracing 
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the bifurcations associated with a double cycle. 

2. Let us see how the above considerations apply to the equation 

rp” + hv’ + F(cp) = y (2.1) 

which occurs in certain problems of mechanics, electrical engineering, automatic phase 

control theory [‘2-41, etc., for various characteristics F(q). 
S tat e men t 2.1. If the function F(cp) is differentiable, periodic with the period 

2 n, and piecewise-monotonic with two extrema in the period (IextrF (cp) 1 = 1 j , and 

if it satisfies the condition 

a$&~)d~ = 0 (2.2) 

then the parameter space y > 0, h > 0 is coarse with respect to the class of charac- 

teristics F(q). 

The parameter space breaks down into three domains corresponding to the three pos- 
sible coarse decompositions of the phase space cp, ‘p’ into trajectories. The various F(q) 

are associated merely with different dispositions of the bifurcation curve in thcstrip, 0 < 

(y < ‘j of the parameter plane (Fig. 1). 

a 

Fig. 1 

Equation (2.1) is equivalent to the system 

dq -=Y=p, $=+ty_-((cp)EQ dt 

and‘therefore to the equation 
dY 

dT = 
r--Y--Fw 

Y 

(2.3) 

(2.4) 

Let us consider (2.3) and (2.4) on the phase cylinder - rt < ‘p f rt (the straight 
lines v = 2 rt are identical). The two equilibrium states of (2.3) or the two singular 
points of (2.4) lie on the axis y = 0 and constitute a focus and a saddle for all charac- 
teristics of the class F(q). The character of the equilibrium states can be determined 

from the roots of the characteristic equation.and depends on the sign of F’(V) at the 

point in question. The derivative F’(q) has different signs at the neighboring singular 

points. The focus is stable for h> (I . For y = 1 the singular points merge, forming 
a singular point of the saddle-node type. 

The Dulac criterion [S] enables us to formulate exhaustive statements about the bifur- 
cations associated with limit cycles. Since the quantity P,’ + Qv’ z - h does not 
change sign in the domain of the parameter space under consideration, there are no 

limit cycles surrounding the equilibrium state, and there cannot be more than one limit 
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cycle girding the phase cylinder. Bifurcations associated with the sprouting of a limit 
cycle from a condensation of trajectories (i. e. with the birth of a double limit cycle) 
are an impossibility for the class of characteristics under consideration. 

Condition (2.2) implies that a bifurcation associated with a separatrix loop can exist 
in the upper half-cylinder (y > 0) only. In fact, if there exists a closed contour con- 

sisting of the integral curves of Eq. (2.4), then 

or, by virtue of (2.2), 257 

c ‘o [r - k/WI 4) = 0 

which is impossible for y(q) < 0 and positive. h and y. Every trajectory of system 
(2.3) on the lower half-cylinder intersects the axis y = 0 (provided it is not the o - 

separatrix of the saddle). 

We must now establish the possibility of bifurcations associated with the sprouting of 
a limit cycle from a separatrix loop in the upper half-cylinder for the characteristics 

of the class under consideration. 
To be specific, we choose the origin of the coordinate cp in such a way that the con- 

ditions F(--n) = 0, F’(- n) < 0 are fulfilled for the characteristic F(c+J) (this is 
always possible for system (2.3). We denote the other root of the equation Y(cp) = 0 

bY 'PO. 
Let us introduce the comparison system 

(2.5) 

The characteristic @(cp) lies below the characteristic F(V) of system (2.3). The 

vector field of system (2.5) is rotated relative to the vector field of system (2.3) by a 

positive angle on the upper half-cylinder. 
The qualitative structures of the decomposition of the phase space and of the para- 

meter space of comparison system (2.5) are readily obtainable. For h > 0 andy > 0 
system (2.5) has just one structure of the decomposition of the phase space into trajec- 

tories. All of the trajectories proceed from infinity towards a limit cycle lying in the 

strip (y + 1) / h < cp < y / h on the upper half-cylinder. 
Let us trace the behavior of the trajectories of system on the upper half-cylinder, 

using what we know about the behavior of the trajectories of system (2.3) for h = 0 
and comparison system (2.5). 

We begin by considering by the decomposition into trajectories for system (2.3) in 
the case h = 0 (0 < y < 1). Equation (2.4) is integrable. Two singular points lie 
on the phase cylinder ; these are y = 0, cp = cpl (a center) and y = 0, cp = cpa (a 
saddle), where ‘pl, qs are the roots of the equation y - F(q) = 0 (cps > rpl). The 
equation of the separatrices passing through the saddle is 

m 

(2.6) 

The function @(cp) is periodic with the period 2 ?t, piecewise-monotonic with two 
extrema per period at the points cp = - n(cp = n) and cp = ‘pa and vanishing at 
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the points ‘ps and Q( - a-t < cp2, < cps). 
The equation 

YbP - 92) - Wcp) = 0 

always has a unique simple root cp = rp*(- n < ~2, < ‘p* < cps) for Y # 0 
(0 < y ( 1) in addition to the double root rp = (p2 . Hence, for 0 < y < 1 sepa- 

ratrix (2.6) forms a loop which surrounds the equilibrium state cp = Vi. We note that 

the a-separatrix of the saddle on the upper half-cylinder cannot return to the same saddle; 

it winds on the cylinder out to infinity (infinity is stable for h = 0). 

Only for y = 0 do we have ‘p* = ‘pze = - n , whereupon the separatrix forms a 

loop girding the cylinder. For any y J= 0 (0 < y < 1) we can always choose an h 
so small that the a-separatrix of the saddle on the upper half-cylinder also winds on the 

cylinder. Since infinity for system (2.3) is unstable for h > 0 , this fact implies the 
existence of a stable limit cycle girding the cylinder for small h (this limit cycle is 

unique by virtue of the Dulac criterion). 

For large h the structure of the decomposition of the phase space into trajectories can 
be determined with the aid of comparison system (2.5). On the upper half-cylinder the 

representing point which moves along a trajectory of system (2.3) from left to right 
intersects the trajectories of system (2.5) downward. Let y = q be the point of inter- 

section of the a-,separatrix of the saddle on the upper half-cylinder with the straight 

line cp = ‘pi. If we choose h in such a way that the upper edge of the strip containing 

the limit cycle of system (2.5) lies below the straight line y = ‘1 , so that (y $ I)/ 
/h < q, then the o-separatrlx of the saddle on the upper half-cylinder enters the do- 
main (above the strip containing the limit cycle of system (2.5)) filled by the trajecto- 

ries which intersect the trajectories of system (2.5) downward. In this case system (2.3) 

cannot have a limit cycle. Such a choice of’h for 0 < y < 1 is always possible, 

since the vector field rotates clockwise with increasing h, which means that fl increases. 
Comparison of the structures of the phase-space decomposition for small and large h 

implies the existence for 0 < y < 1 of a bifurcation curve for whose points the a- 

and o-separatrices on the upper half-cylinder form a loop girding the cylinder. This 
curve is single - valued in h for 0 < y < 1, since monotonic variation of h is accom- 
panied by monotonic rotation of the vector field on the upper half-cylinder. The bifur- 
cation curve begins at the point h = y = 0. 

For y = 1 there is a complex saddle-node point on the axis ZJ = 0 . There exists 

a unique value h = ho for which the a- and o-separatrices of the saddle-node form 

a loop girding the cylinder. For 0 (h < h,, there exists a stable limit cycle which 

girds the cylinder ; for h,,<h( ‘a~ all of the trajectories have the saddle-node as their 
limit point and no cycles exist. A unique stable limit cycle exists for T > 1 and any 

h, since there are no limit points and since infinity is unstable in this case. 

The class F (cp) of characteristics of system (2.3) for which the parameter space 1, 

is coarse can be made to include polygonal and discontinuous characteristics by posing 

a restricted problem and not distinguishing between structures of the decomposition of 
the phase space into trajectories which are similar in a certain sense. It turns out that 
despite the (sometimes considerable) differences in the local behavior of the trajecto- 

ries in the phase space, the decomposition of the space on conversion to such character- 
istics remains unchanged in many respects and retains the general pattern of possible 
bifurcations in the parameter space under consideration. We can, for example, regard 
as similar, and not distinguish between, a focus (or node) and a “composite focus”, and 
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a saddle and a “composite saddle”. Figure 2 shows: (a) a focus composed of ordinary 
trajectories ; (b) a saddle composed of ordinary trajectories (the singular point is not an 

equilibrium state) ; (c) a saddle composed of two different analytic saddles (the singular 

point is an equilibrium state). 
The structure of the decomposition of the phase space in the neighborhood of these 

composite singular points is in the ordinary sense identical to the decomposition iri the 

neighborhood of the analytic focus and saddle, but the behavior of the trajectories with 

respect to t differs markedly. 
We can go still further in some cases by not drawing a distinction between a trajectoty 

continuum and a single trajectory, provided their behavior as t 9 00’0~ t + - 00 is in 

some sense similar. 

Let us consider some examples of such identifications. Upon shifting of the phase plane 
along the broken line, the curve I in Fig. 3a becomes identical with the continuum of 

curves 1’ which merge into a slip segment and a portion of the curve 1 (Fig. 3b). 

An isolated singular point of the focus (or node) type can be identified either with an 
attraction or repulsion segment (Fig.‘4a), or with a bounded domain filled with closed 
trajectories and playing the role of an attraction or repulsion element for other trajec- 

Fig. 2 Fig. 3 Fig. 4 

This identification of a singular point with linear or two-dimensional attraction or 

repulsion elements naturally give rise to analogs of the bifurcations associated with the 
birth of a limit cycle from a singular point upon a change in stability. 

Q 6 c d 

Fig. 5 Fig. 6 

Figure 5 shows some possible cases of identification of the separatrix of an ordinary 
analytic saddle with the trajectory continuum of a composite saddle: Fig. 5a is a saddle 
composed of two shifted analytic saddles with an attraction segment for the trajectory 

continuum ; Fig. 5b is a saddle composed of analytic saddles with a repulsion segment 
of the trajectory continuum ; Fig. 5c is a saddle composed of ordinary trajectories with 
an attraction segment for the trajectory continuum (there are no equilibrium states at 
the ends of the rest segment) ; Fig. 5d is a saddle with a repulsion segment composed of 
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ordinary trajectories. This does not exhaust the range of possible identifications. For 
example, one can identify a stable limit cycle with a limit cycle containing a slip seg- 
ment which the representing point traveling in the trajectory continuum reaches after 

a finite time (Fig. 6). 

The inclusion of polygonal and discontinuous characteristics in the class F (cp) yields 
considerably simpler equations amenable to complete qualitative investigation and 
enabling one to obtain the equations of the boundaries in which bifurcations in the para- 

meter space take place, Moreover, the qualitative results of investigation to within the 

above identifications coincide with the results corresponding to the analytical character- 

istics of the class F (cp). 
For example, the class F(cp) for Eq. (2.1) can be extended by means of the polygonal 

characteristics (Fig. 7a) 
2((P+4l(~+W--l, --nfcp<h 

h<qdn. 

or the relay-type characteristics (Fig. 7b) 

--//(n+M, --n<cp<h 
F2(@ = { x/(rc--A). h<cp<n. 

G7i 

(2.8) 

where h is an “internal parameter” of the family of characteristics [S]. 

Fig. 7 

It is easy to find the equations of the curves on which the bifurcations for these char- 
acteristics lie. For example, we can readily establish that for characteristic (2.7) the 

bifurcation curve in the plane y, h passes through the origin and through the point 

(4 $2 JSG%> at which it joins the vertical segment of the bounda~. 

The equation ‘of the bifurcation curve is especially simple for h = x (when charac- 

teristic (2.7) becomes discontinuous), S---1 ?c”Vz yz._- 
eH+l ) 

H= 
1/4-_ 

For h # n and y < i ‘in the phase space there are no 
singular points on the line of matching. For h = n and 
y < 1 the tie singular points are a focus and a saddle 

(on the line of matching) composed of ordinary trajectories. 
For y = 1 there is a complex singular point on the line 

of matching ; this point vanishes for y > 1. 
In the case of characteristic (2.8) the merging of the 

Fig. 8 
bif~cation curve with the vertical segment of the bound- 
ary occurs at the point y = n/(n - A), h = ho, where 

b is the root of the equation 
2n~[1-exp(-~s~~~-Lz~jl=h~(rr-~)2(n+h) 

For y < rc / (n - h) there are two singular points (a composite focus and a compo- 
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site saddle) composed of ordinary trajectories on the lines of matching in the phase 
space. Fory = n/(n - h)there arises a special formation (Fig. 8) similar to a saddle- 
node. This formation contains the attraction segment y = 0, .h < v < x and vani- 

shes with increasing Y (the index of the closed curve which encloses the attraction seg- 

ment and adjacent trajectories is equal to zero). 

The parameter space y, h of Eq. (2.1) is coarse with respect to the class of charac- 
teristics F(q), F,(q) and F,(cp) ‘f 1 we identify the attraction or repulsion segments similar, 
in the above sense,with each other. 

3. Let us consider some examples of systems with a more complex decomposition of 

the parameter space which is coarse with respect to some class ofcharacteristics. First, 

let us take the system of equations (describing the self-oscillations of a synchronous 

motor [7, 81) 
dy,‘dt = D -g,(q) - [A + B*,(q) - C%(cp)ly, dvldt = Y (3.4) 

where qI(v) (odd) and q’,(q) (even) are periodic with the periods &C and rc, respec- 
tively, for three types of characteristics: the analytic characteristic +I = sin v? 

q2 = cos &p (Fig. 9a), a polygonal characteristic (Fig. 9b). and a relay-type character- 
istic (Fig. 9c). 

Fig. 9 

Let us introduce the small positive parameter CL, setting D = pT, A = pa, 
B = pfi, c = p.y. The analytical characteristics turn out to be given by the equa- 

tions 

dyldt = - sin q + p[T - (a + B cos 2cp - y sinrp)yl, dqldt = y (3.2) 

System (3.2) has two equilibrium states, a focus and a saddle. For small p the focus 

is stable if a + p > 0 and unstable if a + fi < 0. 
The structure of the decomposition of the phase space into trajectories is determined 

by the character of the singular points, by the character and disposition of the limit 
cycles, and by the behavior of the separatrices. upon introduction of the small parame- 

ter the system can be investigated conveniently with the aid of Pontriagin’s theorem 
[9] which enables us to investigate the behavior of the limit cycles of nearly-Hamilton- 
ian systems and to determine their existence domains. 

From p = 0 system (3.2) has the integral H(cp, y) E 1/a y2 - cos ‘p = h. The 
values of the constant h from the interval - 1 (h < 1 are associated with closed 
integral curves which surround an equilibrium state (of the center type) ; the values from 
the interval 1 (h < co are associated with integral curves girding the phase cylinder. 
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For h = 1 the saddle separatrices form a loop girding the cylinder. 

If we rewrite system (3.3) as 

@/at = H,’ + PP(cp,Y) dyldt = - K+@ + q(cp,y) (3.3) 

then the values of the constant h which isolate the roots of the conservative system whose 
neighborhoods contain the limit cycles of system(3.3) on the upper and lower half-cylin- 

ders for small ~1 are the roots of the equations 

$1(h) = 0, *a(h) = 0 
where 

=&V-(5 - 2 sina cp) f2 (cos ‘p + h) 1 dq~ = 

0 

Here F(‘/s 3t, k) and E(llan, k) are total elliptic integrals of the first and second 
kind, and v = T/b, u = (cc + p)/fi, k2 = 2 / (h + 1) (1 <h C co) 

The values of the constant h, which isolate the curves C,,..of the conservative system 
surrounding the equilibrium state are the roots of the equation 

where &dh) = 0 

$3(h) = (pi+qj)dqdy= - 5s (a+pcos2~-_sincp)dtpdy= 

=-21/Q p(+2 sinacp)Gcp+h&p= 

= - ISP ([a - lel16 (x4 - xa+ l)]E(‘/a& X) + [a(xa- l)- 

- ‘/lb (3~~ - x4 - 2) ] F (‘/an, x)} 

xa = ‘/a(h + 1) (- 1 <h < l), ‘p. = arccos (- h) 

The roots of the equations g,(h) = 0, I#,@) = 0, 9,(h) = 0 depend on the two 
parameters u and v. We can decompose the parameter plane o, v in such a way that 
the domains of the decomposition correspond to the various possible distributions of the 
roots of the equations under consideration. Each distribution is associated with a speci- 

fit structure of the decomposition of the phase space into trajectories. The following 
set of conditions (each condition is associated with some curve in the plane o , V) 
defines all of the bifurcations possible in system (3.3) : 

(1) ga(-l) = 0, (2) 91(~) = 0 or *a(m) = 0 

(3) $3(l) = 0, (4) $1(l) = 0, (5) S,(i) = 0 
(6) g,(h) = 0 and *i’(h) = 0, (7) &(h) = 0 H *a’(h) = 0 

(8) $3(h) = 0 and q3’(h) = 0, 
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To be specific, let us set b > 0, Y > 0 and consider the upper half-plane o, Y 
(for V< 0 we obtain a decomposition of the parameter space which is symmetric to the 

domain Y > 0 with respect to the axis u). In this case the equation $r (h) = 0 has 

not more than a single root, and qs (fi) = 0 , $,(h) = 0 not more than two roots 
apiece. The above conditions are associated with the following equations of boundary 
curves and bifurcations: 

1. Q = 0 . An unstable limit cycle arises out of the focus with increasing (r . 

2. 0 = 1 . A stable limit cycle arises out of + 00 with increasing (r . An unstable 
limit cycle arises out of - a, with decreasing (T . 

3 cJ=rs/ . 16 = i:O66... A stable limit cycle surrounding the equilibrium state 
arises from the saddle separatrix with increasing o (since P,’ -k vv’ E 

E - @a < 0) at the saddle). 

4. 2nv - 8~ + 1a8/ls = 0 , A stable limit cycle arises out of the separatrix loop 

on the upper half-plane with decreasing CJ . 
5. 23cv + 8u - lSVl, = 0 . An unstable limit cycle arises out of the separatrix 

loop on the lower half-cylinder with increasing u (if - flpa > 0) ; a sta- 
ble limit cycle arises out of the separatrix loop with decreasing U (if 

- !@a (0) 
6. v > 0 . No curve exists (there cannot be two limit cycles on the upper half- 

cylinder for v > 0). 

7. Setting g,(h) E p[2nv + UC&(~) - cD,(h)l = 0, we can write the parametric 
equations of the curve as 

The curve passes between the points A(O, 1a8/9,-, n-‘=1.36) and B(i, 0). 
As U increases the double limit cycle which has arisen out of the trajectory 

condensation on the lower half-cylinder splits into two limit cycles (of which 

the lower is unstable and the upper stable). 

8. Eliminating a from g,(h) E - i6 p [YY,(h)u - Y,(h)1 = 0 and IJ~‘(~) = 0, 
we obtain an equation. for determining h. The equation ‘u,TY, - Y,Y,’ =0 

has the single root h = 0.86 which corresponds to (J = 1.09. The double 
limit cycle surrounding the equilibrium state vanishes with increasing u , 

Fig. 10 

The decomposition of the parameter space 6, 

v into domains associated with various qualitative 
structures of the decomposition of the phase space 
is shown in Fig. 10. The two slender shaded areas 
represent the domains for whose points the phase 
space contains two limit cycles. 

In the case of polygonal and discontinuous 
characteristics system (3.1) can be investigated 
in similar fashion by the small-parameter method. 
The sufficient conditions of applicability of Pont- 

riagin’s formula [9] to systems with piecewise- 
analytic right sides are formulated in [lo]. 

Let H(z, y), = h be the family of closed 
curves dependent on the parameter h. and com- 
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posed of the segments H&C, y) = h in the intervals zf < z < CC~+~. We assume 
that the functions H&z, y) are analytic in both of their arguments The system 

rc’ = H;’ + PPf& Y), y- = - H*’ + P&t!/) 

where p (x, y), 4 (z, y) are analytic in each interval 54 <x < x4t1 and where p is 

a small parameter, has (for p, # 0) a single limit cycle in the neighborhood of the 
closed curve Ch,, where ho is the root of the equation 

4@+= f ~(~,~)~~-~(~,~)~~~o 
dh, 

(3.4) 

and ‘or)’ # 0 if 6’H / 8y is continuous at the points of matching 3 = xt. The 

limit cycle is stable if $‘(h,)’ < 0 and unstable if 9’ (ho) > 0. 
In a special case the curves Ch, can gird the phase cylinder. 
System (3.1) with polygonal characteristics (Fig. 9b) and a small parameter p @l]( l ) 

has the following integral for p = 0 : 

Q+? Y) = $+[~Z~.)=" :zgfg? (3.5) 

The closed curves of family (3.5) surround the singular point for - t/s% < kz < 0 
and gird the phase cylinder for 0 <h < 00 . The eq~l~b~urn states for p # 0 are 
shifted off the line of matching. These points are O,(l/s Qn, 0) (a focus) and 
&(n - “/a ~2’3t, 0) (a saddle). 

The equations of the boundaries in the parameter space II and v listed in the same 

order as for (3.2) are 

(1) a=o, (2) Q=1, (3) Q = '/s @(l +'/,n)-l= 1.056... 
(4) 231Y--1/a~23f*~(l+'/~n)(J -f.*j9Jp=0 

(5) 2nv + '/,J&~ql + l/&a%) Q - 4j$af~' = 0 

(6) nonexistent for v > 0 

(7) the curve passes between the points A(0, Ysy'n = 1.26.,.) and’ B(1.0) 

(8) 0 = 2,0?... 

The decompositions of the phase space and parameter space for polygonal character- 
istics remain qualitatively identical to the decompositions for the characteristics of 
Fig. 9a. The slender domains for whose points the phase space contains two limit cycles 

a c d e 

Fig. 11 

*) The author of [ll] points out the errors made in [8] (and repeated in 1121) concerning 

the existence of an unstable limit cycle. 
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are likewise preserved,even though their dimensions are slightly altered. Figures lla 

and lie show the decompositions of the cylindrical phase space for domains (1) and (2) 
of Fig. 10, respectively. 

In the case of polygonal characteristics (Fig. 9b) the qualitatively equivalent decom- 

positions of the phase space (Figs. lla and lle) correspond to the domains of the para- 

meter space situated (as in Fig. 10) in the strip 0 ( u ( 1. For both of the above 
approximations of Eq. (3.1) domains (1) and (2) in the parameter space are separated by 

a narrow strip whose points are associated with two limit cycles in the phase space. 
This strip does not vanish with a change in the approximation despite its narrowness (its 

maximum width of 0.015 for G = 1 decreases very rapidly as u - 0, since the bifur- 

cation curve between the points A and B osculates the straight line which is the lower 
boundary of domain (2) at the point A). The coarseness of the parameter space with 
respect to changes of the characteristic with retention of the “slender” elements is not 

self-evident and is related to the preservation of the properties of the bifurcations with 

the disappearance and appearance of a separatrix loop for various approximations. These 
properties are determined by the sign of the quantity P,’ + QI/’ for the saddle [I]. 

For a fixed CJ it is possible to pass from domain (1) into domain (2) by traveling in 
the direction of increasing v . The decomposition of the phase space shown on a srrip of 
width 2~ (Fig. lla) becomes the decomposition of Fig. lle. At v = YO (this value is 

unique by virtue of the monotonic variation of the direction of the vector field with 

monotonic variation of v) the:a-and o-separatrices of the saddle on the lower half- 
cylinder must form a loop girding the cylinder. 

However, a loop cannot give rise to the unstable limit cycle shown in Fig. lie, since 
the saddle quantity given to within terms of the order pa by the expression P,' + Qv’ = 
= - pfh~ for both approximations (Figs. 9a and 9b) is negative in the interval 0 < 
<fJ<i @>O) , so that the limit cycle must become a separatrix loop with in- 
creasing v . This implies that a double limit cycle arises when V has increased to the 

value v = vo. 

This cycle then divides into two cycles (a stable upper cycle and an unstable lower 
cycle), and the stable limit cycle becomes a separatrix loop which vanishes with further 
increases in v and generates the decomposition shown in Fig. llb (the successive transi- 

tions are shown in Figs. lla- lle). 
The above considerations enable us to define the class of characteristics for which 

domains (1) and (2) are necessarily separated by a two-cycle domain. All of the above 
statements apply almost verbatim to the conditions of existence of a thin strip with a 
phase space containing two limit cycles (surrounding the equilibrium state) and separa- 

ting domains (3) and (4). 
A change in the characteristic is generally associated with a shift of the bifurcation 

curves on the parameter plane and of their points of intersection. If the parameter plane 
contains points of intersection of more than two bifurcation curves (and therefore points 
of contact of more than four domains), then the neighborhoods of such points can alter 
the qualitative suucture of the decomposition of the parameter plane with a change of 

the characteristic. 
Preservation of the structure of the parameter plane decomposition at these points 

requires the imposition of more rigid conditions on the class of characteristics which do 
not alter the structure of the parameter plane decomposition. An example of such a 
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point for the parameter plane a, v for the characteristics of Figs. 9a and 9b is point A, 
which is the meeting point of five domains. The unchanging character of the qualitative 

structure of the decomposition of the parameter plane of system (3. I) in the case of the 
characteristics of Figs. 9a and 9b is due to the fact that the quantity P,’ -/- Qal’ for the 

focus and saddle, which is constant to within quantities of the order of pa, has the same 

value for both approximations, and a change in the sign of o is associated not only with 

the sprouting of a cycle out of the singular point, but also with the change in the char- 

acter of the bifurcations for a separatrix loop.,This condition is not satisfied in the case 
of relay-type characteristics. 

Let us consider system (3.1) with relay characteristics (Fig. 9c) and a small parameter 

(the analysis which follows was carried out by I. A. Ne~mniashchaia). For p = 0 this 

system has the integral 

H(cp, y) = ($:f ; ;} =k ‘,;;;z; (3.6) 

The closed curves of family (3.6) surround the singular point for 0 < k < x and 
gird the phase cylinder for at < k ( CO. The system has singular points on the lines 

of matching, namely a composite focus at &(O, 0) and a saddle composed of ordinary 
trajectories at 0, (s, 0) , 

The functions q,(k), *s(k) and q,(k) are especially simple in the case of relay- 
type characteristics, Let us write out the expression for ~$s(k), which has some interes- 

ting properties. We have 

*s(k) = - s/s v’z [ok?’ 
where 

- 2m (k - 44 n)% + 2n (k - Sfd sp] (3.7) 

m=n=O, if 0 < k Q t/* at 

m=l, n=O, if ‘lp.<k<S/*~ 

m=n=l, if “/e 3t < k \( n 

Figure 12 shows curves (3.7) for several o in the plane k$ . For cr = 0 the function 

*s,(k) for 0 < k < l/p 3t coincides with a segment of k-axis, and therefore has a con- 

tinuum of roots. 
$fi 

The passage of o through zero corresponding to 
the sequence of changes of the qualitative struc- 

20 
tures shown in Fig. 13 is the analog of the bifurca- 
tion corresponding to the sprouting of an unstable 

Fig. 12 Fig. 13 

limit cycle from the singular point. The limit cycle arises out of the boundary of the 

domain filled with closed curves ( l ) . (See Note at the foot of the next page). 
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Let us write out the equations of the boundaries on the plane uv 

(I) o=o, (2) o= 1, (3) 0=‘/((31/Ll)=l.o49... 

(4) 2rrv- ‘Is)/2;(%(4cf+l-.33zj=0 

(5) 2nv + I/* Jczn h (4 0 + 1 - 3 c/T) - 0 

(6) nonexistent for v > 0 

(7) the curve passes between the points 

A [f$-1, flG(l--q)] and B(i,O) 

(8) ‘0 = &/IS Jm = 1.11 . . . 

The decompositions of the phase space of system (3.1) with relay-type characteristics 

are not qualitatively equivalent to the corresponding decompositions for analytic and 

polygonal characteristics in all domains of the parameter space ; in those cases where 

differences arise, however, the decompositions are nevertheless similar and admit of iden- 
tification in the above sense. The difference in bifurcations is on the straight line u =0 

(the birth of an unstable limit cycle from the boundary of some domain containing a 
singular point which accompanies a change in the sign of 0). 

The decomposition of the parameter space cr, v for the system with relay-type char- 
acteristics differs from that shown in Fig. 10 in the position of the curve AB. Point A 
does not lie on the axis a = 0. The curve AB osculates the boundary of domain (2) 

at point A for u = fi - 1. As v increases in the interval 0 ( u < v/3 - 1 , 
we can have a direct transition from the decomposition of Fig. lla to the decomposition 

of Fig. lie which bypasses the two-cycle domain; this direct transition occurs through 

the birth of an unstable limit cycle out of the separatrix loop girding the cylinder. The 

character and relative disposition of the other bifurcation curves remain unchanged 

under replacement of polygonal or analytic characteristics by relay-type characteristics. 

4, Let us consider the system (describing the symmetric flight of an aircraft in a ver- 

tical plane at a constant angle of attack p3]) 

dqI / at = y’ - coscp, dy I dt = y(a - fiys - sin cp) (4.1) 

and introduce 1141 the small parameter b = p, CC = kp. For p = 0 the system has 

the integral H(cp, y) = ‘lsya - y cosrp = h (4.2) 

l ) For (I 0 0 the composite equilibrium state on the line of matching is a “center to 
within quantities of the order of ri”“. With allowance for terms of order P’ the strip 

- ‘11 JC < Cp < l/d n contains “slowly winding” or “slowly unwinding” spirals. This can 
be shown, for example, by constructing the succession function on the half-line Y > 0 
of the line of matching. It is of the form 

y2 = Yl - a/s Tyyo2p2 + (...)pS + . . . (y. is a parameter) 

The function Cps* describing bifurcations in the neighborhood of the singular point 
with allowance for terms of the order of PS cannot be determined from (3.4). but is 
obtainable from the so-called second approximations. 
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The closed curves of family (4. ‘2) surround the equilibrium state for - ‘/a <h < 0 
and gird the phase cylinder for 0 (h < CO. For a small cc the system has three equi- 

librium states: The saddles O,(-1/, z, @and O,(‘/, n, 0) and the focus O,[(k - l)p, 
1 + ‘l&c3 - l)p*] (which becomes a center for p = 0 ). The phase space is cylin- 

drical. By virtue of the physical meaning of the variables and parameters we need con- 
sider only the upper half-cylinder (y = 0 is the integral curve) and the positive values 
of the parameters. 

A distinguishing feature of the decomposition of the phase space into trajectories con- 

sists in the fact that the parameter values associated with the appearance of a saddle- 

to-saddle separatrix are also associated with the simultaneous appearance of two closed 

contours consisting of the separatrices of a saddle on a cylinder and segments of the axis 
cp , i.e. a contour surrounding the equilibrium state and a contour girding the phase 

cylinder. As the parameters vary, the contours consisting of saddle separatxices give rise 

either to a limit cycle suriounding the equilibrium position or a limit cycle girding the 

phase cylinder. The function g(h) whose roots determine the structure of the decompo- 
sition into trajectories can therefore be written in standard form for all cycles, i.e. 

\p (h) = 
a 

(k - 3~‘) du dq or q(h) -= i g(k-gyg)dv 
I, 

for - ‘/a < h < 0 or 0 < h < 00, respectively ; both of these cases ,are covered 

by the expression 

(4.3) 

Here e, and e, <e, are either the positive roots of the equation y” - 3y = 3h 

if - */a (h < 0 or the positive roots of the equations ti - 3y = 3h and y8 + 

+ 3 y = 3, respectively, if h > 0. The definition of the function g(h) is comple- 
mented by its limiting values for h = - */s and h = 0. 

Analysis shows that q(h) = 0 cannot have more than two roots in the interval 0 < 
<h < 00 and more than one root for - ‘/a < h (0. 

All of the possible bifurcations in system (4.1) with a small parameter are covered by 

the following set of conditions (each of which is associated with a specific value of k). 
1. $ (- ‘/*) = 0, ly(- a/s) = 0. An unstable limit cycle arises out of the equi- 

librium state as k. decreases. 

2. WN = 0. An unstable limit cycle girding the cylinder arises from a separatrix 
loop with decreasing k, and an unstable limit cycle surrounding the equilib- 

rium state arises with increasing k. 

3. $(h*) = 0, $‘(h*) = 0 (h* > 0). The double limit cyclevanishes with decreas- 
ing k. The double limit cycle splits into two limit cycles (the upper one 
stable, the lower one unstable) with increasing k . 

The above conditions are associated with the following values of the parameter k: 

(1) k = 3, (2) k = P(-‘/,) / 8 19 = 2.188, (3) k = 2,05 

Figure 14 shows the form of the functions I/I(~) for several values of k . Figure 15 
shows the decomposition in the plane of smali parameters a, p of the phase space into 

trajectories with domains characterized by differing qualititive structures. The points 
lying within the shaded strip are associated with the two limit cycles in the phase space. 

Let us consider system (4.1) containing a small parameter with cos cp approximated 
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by a sawtooth function and sin cp by a relay function (the analysis which follows was 

carried out by I. S. Sharova). 

Fig. 14 Fig. 15 

For p = 0 the system has the integral 

H (cp, rm) = 5 - Y + 

for which the derivative aHlay is continuous at the lines of matching cp 

cp= 2 3t. 
= 0, and 

The closed curves of family (4.4) surround the equilibrium state of the “composite 

center” type for -‘2/a <h<O andg ird the phase cylinder for 0 <h < OQ . The 
equilibrium states O,(- l123t, 0) and O,(V,x, 0) are saddles. The function g(h) 
in this case becomes P. 

(4.41 

$(h)=+S’[y+2ky2-3hy-2y4]dy 
ee 

(4.5) 

and e, and e, have the same values as in the previous case. 

Analysis reveals the identity of the behavior and properties of the functions q(h) for 
the initial and approximating systems with respect to the dependence of the roots on the 

parameter k. The corresponding bifurcation values ofi k for the approximating system 

are k = 3, 0/5, 1.65. Tlie parameter space of the system differs from that shown in 
Fig. 15 only by a slight shift of the shaded strip corresponding to two-cycle systems. 

The identity of the compositions of the phase space for the initial and approximating 
systems is due primarily to the preservation of the properties of the bifurcations associ- 
ated with the saddle separatrices, since the saddle quantity does not change upon transi- 
tion to the approximating system (at the saddle P, + Qv’ = kp for both systems). 

6. It is a well-known fact that the results of qualitative investigations by the small- 
parameter method often remain valid for systems in which the parameters are known in 
advance to be nonsmall. This “small- p miracle” is due to the conditions of coarseness 
of the parameter space with respect to the class of characteristics including characteris- 
tics with a small parameter p which need not necessarily assume small values (here the 

parameter p plays the role of an internal parameter in the class of characteristics depen- 

dent on both variables). 
If a dynamic system with certain parameter values (on the set A,) has a (plane or 

cylindrical) phase space with a continuum of closed curves (surrounding an equilibrium 
state of the center type or in the form of closed curves on a cylinder), if for other para- 
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meter values (on the sets A i) the system can have special noncoarse elements (a non- 

coarse focus, a double limit cycle , or saddle-to-saddle separatrices), and if the parame- 
ter space is not specially degenerate, then the set A, intersects the sets -& (‘). For this 
reason even a small neighborhood of the set A0 must contain a set of bifurcations and 
domains associated with various decompositions of the phase space which are possible 

for the given system. The possibility of other bifurcations, e. g. of bifurcations related 
to changes in the number of singular points of the system, often requires a substantial 
rather than a small change in the parameters. 

Let us return to Eqs. (4.1). no longer assuming that the parameters a and 6 are small. 
A change in the number of equilibrium states of system (4.1) occurs for a > 1, Let us 

consider the domain a < 1 in which the number of equilibrium states is the same as 

that for small p,. The simplest bifurcations associated with a limit cycle can be found 
and have the same character as for small a and 0. The appearance of a stable limit 

cycle out of infinity occurs’as p increases from zero (this is evident directly from Eq. 

(4.1). since infinity changes from stable to unstable when the sign of p is altered), An 
unstable limit cycle grows out of the equilibrium state along the curve 

(4.6) 

(the corresponding boundary in Fig. 15 is the tangent to curve (4.6) at the origin).The 

quantity P,' + Q,,' = a = kp for nonsmall p does not alter the sign and preserves 
the constant character of the bifurcations associated with the saddle separatrices. It is 
only the bifurcations associated with the double limit cycle about which we do not have 
sufficient information to draw inferences. Knowledge of the other bifurcations enables 

us to draw limited conclusions concerning the domain of existence of systems with two 

Fig. 16 

limit cycles. 
The disposition of saddle separatrices for 

large values of the parameter p is shown in 

Fig. 16a (this follows directly from the dis- 
position of the principal isoclines for suffici- 

ently large b). There are no limit cycles 
girding the cylinder. The disposition of sepa- 

ratrices for small p is shown in Fig. 16f (for 

fi = 0 the a-separatrix of the saddle goes 

out to infinity, as can be shown by the method 
of [15]; for small /3 a stable limit cycle 

arises out of infinity). The vector field rotates 
monotonically with decreasing p ,, so that 

l ) If H (z, I/) = h is a family of curves containing a continuum of closed trajectories, 
if the equation is written as 

dY --R,’ + I PI Y) -= 
dx $f’ + P (% Y) 

and if the parameter space is complete in the sense that none of the coefficients occur- 
ring in p (2, v) and q (T, Y) is a constant making a cut in the complete space, then 
this statement is almost self-evident. 
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there is a single value of ge for any fixed aafor which the a- and o_separatrices form 
a loop. The set of points o& pa forms a continuous curve which intersects the strip 
O<a (1. 

However, a stable limit cycle girding the cylinder cannot arise out of the loop, since 
P,' -I- Q,,' = a > 0 at the saddle. 

Only an unstable limit cycle can sprout from, or contact into, the loop ; this can occur 
as p decreases to the value p = fit, only if a double limit cycle girding the cylinder 
arises out of the condensation of trajectories. 

This limit cycle then splits into two limit cycles (the upper one is stable, the lower 

one unstable), and theunstable limit cycle can become a separatrix loop which vanishes 

with further decreases in p and generates an unstable limit cycle surrounding the equi- 

librium state. The unstable limit cycle contracts into the equilibrium state and vanishes 
for the value of 8 satisfying condition (4.6). 

The above description of the changes in the qualitative structure of the decomposition 
of the phase space into trajectories which accompany changes in p enable us to postulate 

the necessary existence of a domain with a phase space containing two limit cycles which 
gird the cylinder ; it also enables us to trace the analogous sequence of bifurcations de- 
pendent on p as in the case of a small p. However, the sequence of structures of the 

decompositions of the phase space into trajectories shown in Fig. 16 and proved rigorously 

for the case of small p can be identified with the corresponding structures for nonsmall 

p to within an even number of limit cycles only. 

The logical possibility of such a discrepancy has not been eliminated, and the coarse- 
ness of the parameter space must be understood in the restricted sense formulated at the 

beginning of the present paper. In this sense the above description proves the coarseness 
of the parameter space with respect to a transition from small to nonsmall p in a fairly 

wide strip ( 0 <a < 1 ) of the parameter space a, fi. 
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Optimization of a process with difference arguments is considered. Necessary optimality 

conditions are obtained in the form of maximum principle. The problem is reduced to 

a boundary-value problem for a system of ordinary differential equations with no differ- 

ence arguments. This is performed by a special transformation. 

The damping of vibrations of a string is considered as an example. 

1, Some important problems in mathematical physics such as the damping of one- 

dimensional vibrational processes (see Example) can be reduced to the following optimal 
problem. 

For the process s(t) = @t(t),..., z,,(t)) with the values z e X c E, for each 
t E IO, k ik] -the process being described on the portions [st,, (s + l)tmJ (s = O,... 
. . . . k - 1) by the equations 

dx 
dt elk+7 I - qP(r, Zf, z-) (reEO,tk]; s=O,...,k-1) (1.1) 

with the boundary conditions 

fl (zi, . . . ) $1, 5;, . . . ) 2$-l) = 0 (i=l,..., q; q<2W (1.2) 
it is required to find a control u(t) = (u,(t),. .., u,(t)) with the values u E U 2 h’, 
for each t E 10, kt,J which minimizes the functional 

J = fO(zoor . . . , z;-‘, zko, . . . , s;-‘) (1.3) 

where z(t) is a continuous time vector-function and u(t) is a piece-wise continuous 
timevector-function on [stkr (s + l)tk]; cp’ = ((pI’ ,..., cp,‘), fo,..., f, are conti- 
nuous and twice continuously differentiabie ; t, is a specified value, 


